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Abstract 

The complexes [MI,(CO),(NCMe),] (M = MO and W) react with an equimolar 
amount of l,%cyclotetradecadiyne (1,GCTDiyne) in CH,Cl, at room temperature 
to give the new bisalkyne complexes [MI,(CO)(NCMe)(q2,n2’-l,%CTDiyne)] in 
good yield. 13C NMR spectroscopy confirms that l&CTDiyne is coordinated as a 
bisalkyne ligand in these complexes. The complex [W12(CO)(NCMe)(~2,n2’-1,8- 
CTDiyne)] reacts with Ph,P(CH,)PPh, (dppm) in refluxing chloroform (48 h) to 
give the complex [W12(CO)(dppm)(q2-1,8-CTDiyne)] where the 1,8CTDiyne is 
bonded via one of its alkyne functional groups. 13C NMR spectroscopy indicates 
that the alkyne ligand in this complex is donating 4-electrons to the tungsten. The 
compounds [MI 2 (CO)(NCMe)( q2, q2’-1 ,8-CTDiyne)] also react with one equivalent 
(M = W) and two equivalents (M = MO) of CyN=CHCH=NCy in CH,Cl, to give 
the novel monocationic complexes [WI(CO)(CyN=CHCH=NCy)( 71~,7~‘-1,8- 
CTDiyne)]I - Et *O and [MoI(CyN=CHCH=NCy) 2( ~2-1,8-CTDiyne)]I. The prepara- 
tions of the new monoalkyne complexes [W(CO)(S$X)2(~2-1,8-CTDiyne)] (X = 
NEt, and NC,H,) are also described. 

Introduction 

Reactions of macrocyclic alkadiynes with organotransition-metal complexes have 
most commonly resulted in the formation of cyclobutadiene complexes via the 
intramolecular transannular cyclization of the diynes [1,2]. The intramolecular 
transannular cyclization of macrocyclic alkadiynes with metal carbonyls has been 
proposed to proceed via a metallocyclopentadiene intermediate [3,4], which must be 
preceded by the formation of a bisalkyne complex. Hitherto, no mononuclear 
bisalkyne complexes containing macrocyclic alkadiynes (such as 1,8-cyclotetrade- 
cadiyne) have been reported. 

In view of these observations and the wide variety of bisalkyne complexes of 
molybdenum(I1) and tungsten(H) previously reported [5-141. It was decided to 
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investigate the reactions of our highly versatile complexes [M12(CO),(NCMe),] 
(M = MO or W) with a macrocyclic diyne, namely 1,8-cyclotetradecadiyne. The 
results of this work are described in this paper. 

Results and discussion 

Equimolar quantities of [MI,(CO),(NCMe),] (M = MO or W) and 1,8- 
cyclotetradecadiyne (1,8-CTDiyne) react in CH,Cl, at room temperature to give 
good yields of the new bisalkyne complexes [MI,(CO)(NCMe)(_r12,~~z’-1,8-CTDiyne)] 
(1 and 2). The complex [WI,(CO)(NCMe)(n2,n2’-1,8-CTDiyne)] (2) reacts with 
Ph,P(CH,)PPh 2 (dppm) in refluxing CHCl, to give a good yield of the green 
monoalkyne compound [WI,(CO)(dppm)(n’-l,%CTDiyne)] (3). However, reaction 
of 1 and 2 with one equivalent (M = W) or two equivalents (M = MO) of 
CyN=CHCH=NCy in CH,Cl, at room temperature afforded high yields of the 
novel monocationic complexes [WI(CO)(CyN=CHCH=NCy)(-r1?,42’-l,8-CTDiyne)]I 
- Et,0 (4) and [MoI(CyN=CHCH=NCy),(q*-1,8CTDiyne)]I (5). Compound 2 also 
reacts with two equivalents of NaS,CNEt, - 3H,O and [NH,][S,CNC,H,] in 
CH,Cl, to give good yields of the monoalkyne complexes [W(CO)(S,CX),($-1,8- 
CTDiyne)] (6 and 7) (X = NEt, and NC,H,). All the new complexes (l-7) were 
fully characterised by elemental analysis (C, H and N) (Table l), IR (Table 2) ‘H 
and 13C NMR spectroscopy (TabIes 3 and 4). The complex [WI(CO)(CyN=CHCH 
=NCy)( q*,n”-1,8-CTDiyne)]I . Et,0 was confirmed as a diethyl ether solvate by 
repeated elemental analyses and ‘H and 13C NMR spectroscopy. 

It is noteworthy that reaction of [MI,(CO),(NCMe),] with 1,8-CTDiyne in 
CH,Cl, results in the formation of orange (M = MO) or yellow (M = W) precipi- 
tates. This is in contrast to the reactions of [MI,(CO),(NCMe)2] with two equiv- 

Table 1 _- 

Physical and analytical data for [MI, (CO)(NCMe)(q’,n*‘-1,8-CTDiyne)] and derivatives 

Complex Colour Yield of Analysis (Found 
pure (calcd.)(%)) 
product C H N 
(%) 

(1) [MoI,(CO)(NCMe)($,q2’-1,8-CTDiyne)] 

(2) [WI,(CO)(NCMe)(n2,n2’-1,8-CTDiyne)] 

(3) [W12(CO)(Ph,P(CH,)PPh,)(~2-1,8-CTDiyne)] 

(4) [WI(COj(CyN=CHCH=NCy) brown 
(p2,nZ’-1,8-CTDiyne)]I*Et,O (41.8) 

(5) (MoI(CyN=CHCH=NCy),($-l,&CTDiyne)JI brown 

(6) [W(CO)(S,CNEt2),($-1,8-CTDiyne)] green 

(7) [W(CO)(S,CNC,H,)2(n2-l,S-CTDiyne)] 

orange 

yellow 

green 

green 

99 33.7 3.7 2.2 
(33.6) (3.8) (2.3) 

93 29.5 3.3 1.6 
(29.4) (3.3) (2.0) 

51 46.4 4.5 - 
(46.3) (4.1) - 

7:.7) 42.0 6.0 3.4 
(3.0) 

79 51.0 7.4 5.7 
(51.5) (7.0) (5.7) 

42 42.7 5.9 4.0 
(43.1) (5.8) (4.0) 

69 42.7 5.2 3.7 
(43.4) (5.2) (4.0) 
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Table 2 

IR data ’ for [MI,(CO)(NCMe)(q2,q2’-1,8-CTDiyne)] and derivatives 

Complex rJ(_) v(m) 
(cm-i) (cm-‘) (coordinated) 

1 2032(s) 184o(vw) 
2 2050(s) 182O(vw) 
3 1920(s) 1655(vw) 
4 2035(s) 1815(w) 
5 - 175o(vw) 
6 1890(s) 178O(vw) 
7 1885(s) 162O(vw) 

a Run as CHCl, films between NaCl plates. 

Table 3 

‘H NMR data for [MI,(CO)(NCMe)(n2,n2’-1,8-CTDiyne)] and derivatives 

Complex ‘H (6, ppm) 

2.52 (bs, 8H, SCH,); 2.08 (bm, 15H, CH, and NCMe) 
2.50 (bs, 8H, SCH,); 2.08 (bm, 15H, CH, and NCMe) 
7.31 (bs, 20H, Ph); 2.2 (bs, 8H, dCH,); 1.54 (bs, 14H, CH, and Ph,PCH2) 
7.81 (s, 2H, CH); 3.55, (q, J,,, Hz, 4H, CH,); 
1.72 (bm, 22H, Cr; 20H, CH,; 6H, CH,) 

so 7.73 (s, 4H, CH); 2.20 (bm, 20H, CH,); 1.75 (bm, 44H, Cy) 
6 3.78, 3.67 (q, Js.s Hz, 8H, CH,); 1.21 (bm, 12H, CH,; 20H, CH,) 
7 3.79,3.69 (q, J,,s Hz, 16H, CH,); 2.03 (bm, 20H, CH,) 

a Spectrum recorded on a Bruker WH 400 spectrometer, (CDCI,, + 20 o C). Other spectra run in CDCl, 
(+ 25 ’ C) on a Jeol FX60 spectrometer; b, broad; m, multiplet; q, quartet; s, singlet. 

Table 4 

13C NMR data for [MI,(CO)(NCMe)(n2,q2’-1,8-CTDiyne)] and derivatives 

Complex 

la 

2” 

3b 

4’ 

7’ 

13C (6, ppm) 

207.48 (s, CO); 173.97 and 153.81 (s, C=C); 111.60 (s, CZN); 
34.27, 32.77, 28.70, 26.19, 17.88 (m, CH,); 6.77(s, CH,) 
208.32 (s, CO); 169.03 and 142.55 (s, C=C); 106.95 (s, Me C=N); 
29.62, 27.94, 23.70, 18.45 (m, CH,); 5.62 (s, CH,) 
227.79 and 222.34 (s, C=C); 209.50 (s, CO); 133.33, 130.86, 128.78, 127.35 (m, Ph); 
78.54 and 75.48 (s, C=C free); 35.48, 28.72, 27.94, 16.64, 18.45 (m, CH,) 
210.83 (s, CO); 143.46 and 136.45 (s, C=C); 120.72 (s, CH); 59.0 (s, CH,O); 
33.4, 30.67, 25.21, 24.3 (m, CH, and Cy); 15.07 (s, CH,) 
223.28 (s, C=C); 120.27 (s, CH); 33.49, 33.17, 30.63, 27.69, 24.96 (m, CH, and Cy) 
239.75 (s, C=C); 212.72 (s, CO); 201.02 (s, CS,); 80.82 (s, C=C free); 
46.43,44.63, 36.00 and 35.27 (s, CH,N); 28.72-18.45 (m, CH,); 12.99 and 12.51 (s, CH,) 
238.84 (s, C=C); 215.06 (s, CO); 197.13 (s, CSa); 80.56 (s, C=C free); 
50.49, 44.38, 35.74 and 34.96 (s, CH,N); 34.96-18.32 (m, CH,) 

Q Spectra recorded on a Bruker WH 400 spectrometer in CDCl, (+ 20 “C). b Spectra recorded on a 
Bruker WH-300 spectrometer in CDCl, (+ 20 o C). ’ Spectra recorded on a Jeol FX 60 spectrometer in 
CDCl, (+25’=C). 
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Me 

Fig. 1. Proposed structure of the complexes [MI,(CO)(NCMe)(~2.$‘-l &CTDiyne)]. 

alents of RC,R’ (M = MO or W; R = R’ = Ph; R = Me, R’ = Ph; for M = W only, 
R = R’ = Me, CH,Cl and p-tol; R = Ph, R’ = CH,OH) to give [MI,(CO)(NCMe)- 
(v~-RC,R’)~] which are all soluble in CH,Cl, and CHCI, [15]. The lower solubility 
of [MI,(CO)(NCMe)(n2,q2’-1,8-CTDiyne)] is probably due to the packing of the 
coordinated 1,8-CTDiyne giving strong forces between molecules in the lattice. In 
view of the similar colour and IR spectral properties of 1 and 2 to the complexes 
[WI,(CO)(NCMe)(v*-RC,R),] (R = Me and Ph), which have been structurally 
characterised by X-ray crystallography [15], it is highly likely that the structures of 1 
and 2 will be similar. The proposed structures for 1 and 2 are shown in Fig. 1. The 
alkyne groups on the l,&CTDiyne ligand must also be ci.s with the alkyne groups 
parallel to each other with only five CH, groups between the alkyne ligands. 
Templeton and Ward [16] have correlated the number of electrons donated by the 
alkyne to the metal and the alkyne contact carbon chemical shifts. Since complexes 
1 and 2 are only sparingly soluble in polar solvents the i3C NMR spectra were 
measured on a 400 MHz instrument. The alkyne carbon contact shifts of 1 and 2 are 
at S 173.97 and 153.81 ppm for 1 and 6 169.03 and 142.55 ppm for 2. These values 
indicate that the alkynes are donating a total of six electrons to the metal in these 
complexes, i.e. an average of three from each alkyne. From these 13C NMR spectra 
it is also highly unlikely that l&CTDiyne is coordinated as a cyclobutadiene ligand 
in these complexes, as complexes such as [MI,(CO)(NCMe)(r14-1,8-CTDiyne)J 
would be “16-electron”. The chemistry of 1 and 2 described below also confirms 
that the 1,8-CTDiyne ligand is bonded as a bisalkyne ligand in these complexes. 

Reaction of the complexes 1 and 2 with phosphorus donor ligands is considerably 
slower than with the alkyne complexes [WI,(CO)(NCMe)($-RC,R),] (R = Me or 
Ph). For example, 1 and 2 did not react with P(OMe), or PPh, even after refluxing 
in CHCl, for 24 h. However, reaction of [WI,(CO)(NCMe)(n2,n2’-l&CTDiyne)] 
with one equivalent Ph,P(CH,)PPh, (dppm) under reflux in CHCl, for 48 h gave 
the green complex [WI,(CO)(dppm)(~2-l,8-CTDiyne)J, which is analogous to 
[WI,(CO)(dppm)(q*-MeC,Me)]. The X-ray crystal structure of [WI,(CO)(dppm)- 
(n2-MeC,Me)] has been determined [27], and the very similar colour and spectral 
properties of 3 indicate that the stereochemistry is likely to be very similar (Fig. 2). 
The i3C NMR spectrum of 1,8-CTDiyne (+ 25 o C, CDCl,) shows an alkyne (C%Z) 
resonance at 6 80.83 ppm. Resonances at 6 78.54 and 75.48 ppm for 3 were 
observed which was expected since one alkyne ligand of the 1,8-CTDiyne is 
displaced by one phosphorus atom of the dppm leaving one “4-electron” alkyne 
coordinated to the tungsten. The very low field resonances at S 227.79 and 222.34 
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Fig. 2. Proposed structure of the complex [WI,(CO)(dppm)(q*-1,8-CTDiyne)]. 

ppm are likely to be due to the alkyne donating “4-electrons” to the metal. 
However, without carrying out 13C labelling studies it is difficult to distinguish 
between 13C shifts of C%C and GO in this type of complex, although it has often 
been found that the C=C resonances occur at lower field than the GO resonances. 

Complexes 1 and 2 also react with CyN=CHCH=NCy. The reaction of 
[WI,(CO)(NCMe)( q2, q2’-1,8-CTDiyne)] with one equivalent of CyN=CHCH=NCy 
in CH,Cl, at room temperature gives the cationic complex [WI(CO)(CyN==CHCH 
=NCy)(q2,q2’-1,8-CTDiyne)]I * Et,0 (4). The X-ray crystal structure of 
[WI(CO)(bipy)(q2-MeC,Me),][BPh,] is known [18], and since this complex has very 
similar physical and spectroscopic properties to 4 the structure shown in Fig. 3 is 
proposed for 4. As expected the 13C NMR spectrum of 4 shows alkyne contact 
carbons at 6 143.46 and 136.45 ppm which indicates that both alkynes are donating 
a total of six electrons to the metal, i.e. both alkyne groups of 1,8-CTDiyne are 
coordinated in this complex. However, [MoI,(CO)(NCMe)( q2,q2’-1,8-CTDiyne)] 
reacts with two equivalents of CyN=CHCH=NCy to also give a monocationic 
non-carbonyl containing complex, [MoI(CyN=CHCH=NCy), ( q2-1,8-CTDiyne)]I 
(5). This is likely to be formed via the dicationic complex [Mo(CO)(CyN 
=CHCH=NCy) 2 ( q2-‘l,8-CTDiyne)]2 I which is analogous to [W(CO)(bipy) 2( v2- 
PhC,Ph)][BPh,], [18]. ‘H and 13C NMR data (see Tables 3 and 4) for 5 suggest that 
the two CyN=CHCH=NCy ligands are in a similar environment, and hence the 
most likely structure for this complex has the alkyne trans to iodide as shown in 
Fig. 4. The 13C NMR of 5 (see experimental) indicates that one alkyne is coordi- 
nated to the metal and one “free” in this complex. 

Bisdithiocarbamate alkyne complexes of the type [M(CO)(S,CX) *( q2-RC, R’)] 
have been extensively investigated [19-241. The reactions of the tungsten complex 

1 

Fig. 3. Proposed structure of the complex [WI(CO)(CyN=CHCH=NCy)(~2,~z’-l,8-CTDiyne)]l~ El *O. 
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Fig. 4. Proposed structure of the complex [MoI(CyN=CHCH=NCy),(~z-l,S-CTDiyne)]I. 

[WI,(CO)(NCMe)(~2,~2’-1,8-CTDiyne)] with NaS,CNEt, . 3H,O and [NH,][S$- 
NC,H,] have been studied. IR studies indicate that reaction of 2 with one 
equivalent of either NaS,CNEt, .3H,O or [NH,][S,CNC,H,] in CH,Cl, gave a 
mixture of 2 and [W(CO)(S,CX),(n2-l&CTDiyne)] (X = NEt, and NC,H,). How- 
ever, reaction of 2 with two equivalents of $CX- (X = NEt, and NC,H8) gave the 
expected monoalkyne complexes [W(CO)(S,CX),(~2-1,8-CTDiyne)] (6 and 7). As 
has been previously observed for 3 and 5 from r3C NMR spectroscopy, only one of 
the alkyne groups on 1,8-CTDiyne is coordinated to the tungsten. Since only two 
C-=C resonances (coordinated and uncoordinated I,8-CTDiyne) are observed for 
complexes 5, 6 and 7 it is likely that rapid rotation of the l,%CTDiyne ligand is 
occurring (faster than the NMR timescale at room temperature) which has often 
been previously observed with monobut-Zyne complexes of molybdenum(H) and 
tungsten(H) [10,13,17]. 

Summarising these results it is evident that the special ability of molybdenum 
and tungsten to form coordinatively unsaturated bisalkyne and trisalkyne complexes 
has stabilised the formation of a macrocyclic diyne, such as 1,8-cyclotetradecadiyne, 
as a coordinated bisalkyne ligand in this system. The reactions of the bisalkyne 
complexes [MI,(CO)(NCMe)( n2,n2’-1,8-CTDiyne)] are similar to those of the other 
conventional bisalkyne compounds of the type [WI,(CO)(NCMe)( ~I~-RC,R),] (R = 
Me and Ph). However, they are slower, probably owing to the chelate effect of the 
macrocyclic diyne. 

Experimental 

All reactions were carried out under nitrogen by standard Schlenk line tech- 
niques. The complexes (MI,(CO),(NCMe),] (M = MO or W) were prepared by the 
published method [25], and all chemicals were purchased from commercial sources 
except CyN=CHCH=NCy which was prepared by the literature method [26]. IR 
spectra were recorded as CHCl, films between NaCl plates on a Perkin-Elmer 197 
IR spectrophotometer. ‘H and r3C NMR spectra were recorded on a Jeol FX 60 
MHz, a Bruker WH 300 MHz or a Bruker WH400 MHz NMR spectrometer (all 
spectra were calibrated against tetramethylsilane). 
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Preparation of [MoI~(CO)(NCMe)(~2,~2’-1,8-CTDiyne)] (I) 
1,8-CTDiyne (0.365 g, 1.938 mmol) was added to a solution of [MoI,(CO),- 

(NCMe),] (1.000 g, 1.938 mmol) dissolved in CH,Cl, (20 cm3). After 17 h stirring 
the orange precipitate was allowed to settle and the solvent syringed off. The 
precipitate was washed with 4 x 15 cm3 portions of CH,Cl, and dried in vacua. 
Yield 1.16 g, 99%. 

In a similar reaction of [WI,(CO),(NCMe),] with 1,8-CTDiyne gave a yellow 
precipitate of [WI,(CO)(NCMe)(~2,~2’-1,8-CTDiyne)] (2) (see Table 1 for yield and 
analytical data). 

Reaction of 2 with Ph, P(CH,)PPh, (dppm) 
To a stirred suspension of [WI,(CO)(NCMe)(q2,v2’-1,8-CTDiyne)] (0.300 g, 

0.432 mmol) in CHCl, (30 cm3) was added dppm (0.166 g, 0.432 mmol). After 48 h 
refluxing, filtration and removal of solvent in vacua gave bright green 
fWI,(CO)(dppm)(~2-1,8-CTDiyne)], which was recrystallised from CH,Cl,. Yield 
0.23 g, 57%. 

Reaction of 2 with one equivalent of CyN=CHCH=NCy 
To a stirred suspension of [WI,(CO)(NCMe)(q2,v2’-1,8-CTDiyne)] (0.400 g, 

0.576 mmol) in CH,Cl, (15 cm3) was added CyN=CHCH=NCy (0.127 g, 0.576 
mmol). After 15 h, filtration and reduction of solvent in vacua gave a dark brown 
solution, from which brown [WI(CO)(CyN=CHCH=NCy)(~2,~2’-1,8-CTDiyne)]I * 
Et 2O (4) was precipitated with Et ,O. Cooling of a CH ,Cl 2/ Et 2O solution of (4) to 
- 30 o C produced brown crystalline aggregates of 4. Yield 0.39 g, 71%. 

Reaction of 1 with two equivalents of CyN=CHCH=NCy 
To [MoI,(CO)(NCMe)(~2,~2’-1,8-CTDiyne)] (0.500 g, 0.824 mmol) suspended in 

CH,Cl, (15 cm3) was added CyN=CHCH=NCy (0.363 g, 1.647 mmol). After 17 h, 
filtration and removal of solvent in vacua afforded [MoI(CyN=CHCH=NCy),( q2- 
1,8-CTDiyne)]I (5) as a brown crystalline powder, which was recrystallised from 
CH,Cl,/Et,O. Yield 0.64 g, 79%. 

Reaction of 2 with NaS,CNEt, - 3H,O 
To [WI,(CO)(NCMe)(q2,y2’-1,8-CTDiyne)] (0.400 g, 0.576 mmol) in CH,Cl, (15 

cm3) was added NaS.&NEt, - 3H,O (0.259 g, 1.151 mmol). After 17 h filtration and 
removal of solvent in vacua afforded [W(CO)(S,CNEt 2)2( v2-1,8-CTDiyne)] (4) as a 
dark green crystalline powder, which was recrystallised from CH,Cl,. Yield 0.17 g, 
42%. 

In a similar reaction of 2 with two equivalents of [NH,][S,CNC,H,] in CH,Cl, 
gave the new complex [W(CO)(S2CNC,H,),(q2-1,8-CTDiyne)] (7) (see Table 1 for 
colour and yield). 
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